High-performance air-stable n-type carbon nanotube transistors with erbium contacts.
نویسندگان
چکیده
So far, realization of reproducible n-type carbon nanotube (CNT) transistors suitable for integrated digital applications has been a difficult task. In this work, hundreds of n-type CNT transistors from three different low work function metals-erbium, lanthanum, and yttrium-are studied and benchmarked against p-type devices with palladium contacts. The crucial role of metal type and deposition conditions is elucidated with respect to overall yield and performance of the n-type devices. It is found that high oxidation rates and sensitivity to deposition conditions are the major causes for the lower yield and large variation in performance of n-type CNT devices with low work function metal contacts. Considerable improvement in device yield is attained using erbium contacts evaporated at high deposition rates. Furthermore, the air-stability of our n-type transistors is studied in light of the extreme sensitivity of these metals to oxidation.
منابع مشابه
Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes.
Complementary metal-oxide semiconductor (CMOS) operation is very desirable for logic circuit applications as it offers rail-to-rail swing, larger noise margin, and small static power consumption. However, it remains to be a challenging task for nanotube-based devices. Here in this paper, we report our progress on metal contact engineering for n-type nanotube transistors and CMOS integrated circ...
متن کاملFabrication of air-stable n-type carbon nanotube thin-film transistors on flexible substrates using bilayer dielectrics.
Single-walled carbon nanotube (SWNT) thin-film transistors hold great potential for flexible electronics. However, fabrication of air-stable n-type devices by methods compatible with standard photolithography on flexible substrates is challenging. Here, we demonstrated that by using a bilayer dielectric structure of MgO and atomic layer deposited (ALD) Al2O3 or HfO2, air-stable n-type devices c...
متن کاملBallistic (n,0) Carbon Nanotube Field Effect Transistors' I-V Characteristics: A Comparison of n=3a+1 and n=3a+2
Due to emergence of serious obstacles by scaling of the transistors dimensions, it has been obviously proved that silicon technology should be replaced by a new one having a high ability to overcome the barriers of scaling to nanometer regime. Among various candidates, carbon nanotube (CNT) field effect transistors are introduced as the most promising devices for substituting the silicon-based ...
متن کاملHighly uniform and stable n-type carbon nanotube transistors by using positively charged silicon nitride thin films.
Air-stable n-doping of carbon nanotubes is presented by utilizing SiN(x) thin films deposited by plasma-enhanced chemical vapor deposition. The fixed positive charges in SiN(x), arising from (+)Si ≡ N3 dangling bonds induce strong field-effect doping of underlying nanotubes. Specifically, an electron doping density of ∼ 10(20) cm(-3) is estimated from capacitance voltage measurements of the fix...
متن کاملHigh performance n-type carbon nanotube field-effect transistors with chemically doped contacts.
Short channel ( approximately 80 nm) n-type single-walled carbon nanotube (SWNT) field-effect transistors (FETs) with potassium (K) doped source and drain regions and high-kappa gate dielectrics (ALD HfO(2)) are obtained. For nanotubes with diameter approximately 1.6 nm and band gap approximately 0.55 eV, we obtain n-MOSFET-like devices exhibiting high on-currents due to chemically suppressed S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 7 9 شماره
صفحات -
تاریخ انتشار 2013